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by Emanuel Parzen
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\\\ Abstract

non-parametrically analyze time series functions such as the
sample spectral density, sample correlations, and sample partial
correlations. The aim is to identify the memory type of an
observed time series, and thus to identify parametric time domain
models that fit an observed time series. Time series models are
usually tested for adequacy by testing if their residuals are
white noise. It is proposed that an additional criterion of fit
for a parametric model is that it have the non-parametrically
estimated memory char?cteristics An important diagnostic of
memory is the index % of regular variﬁtion of a spectral
density; estimators are proposed for ﬁ' Interpretations of the
new quantile criteria are developed through cataloging their
values for representative time series. The model identification
procedures proposed are illustrated by analysis of long memory
series simulated by Granger and Joyeux, and the airline model

This paper applies techniques of Quantile Data Analysis to

| of Box and Jenkins.
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Dedication

This paper is dedicated to the memory of Gwilym M. Jenkins.

The contributions to time series analysis of Gwilym M. Jenkins
(1932-1982) will always be embedded deeply into the field. His
work (especially joint work with George Box) has influence in
diverse fields of science. I was fortunate to come to know
Gwilym early in my career, on a visit to London in 1958. He
spent 1959-1960 with me at Stanford and I spent 1961-1962 with
him at Imperial College. He earned the respect and affection
of all who knew him or his work. His life and work was heroic.
As we contemplate the sadness of his death so young, may we

continue to enjoy his spirit.
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1. FUN.STAT approach to time series model identification

The need to analyze data arising in the form of time series
arises in diverse fields. The concept of a conventional analysis
is not the same in each field. Engineers tend to estimate mean,

variance, and spectrum (which may be regarded as a non-parametric

signature of models). Economists and forecasters tend to

estimate mean, variance, and time domain models such as ARMA or

ARIMA (which are parametric models). Spectral and ARMA
estimation are not routine procedures; there are many algorithms
for spectral estimation and time domain model identification.

In addition there are critics of spectral and correlation

based methods of time series analysis, of whom the most
prominent is Mandelbrot (1982). This paper describes an

approach to time series analysis which attempts to use diverse

methods of analysis simultaneously in order to meet the needs

of all the fields of applications of time series analysis.

It also aims to integrate spectral and correlation methods
with methods for long memory and/or long tailed time series.

An approach to spectral analysis and time domain modeling
of time series is described in Parzen (1979), (1980), (1981),
(1982), (1983a), (1983b), (1983c). An approach (motivated by
time series methods) to statistical data analysis of probability
distributions is described in Parzen (1979), (1982), (1983a),
1983b), (1983c), (1983d); it is called the Quantile Data Analysis

and FUN.STAT approach, to connote that it is based on functional . ‘

.............................................................
............................

-------
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statistical inference, entropy and information measures, and

quantile and density quantile approach. !

Parzen (1980) states that "a criterion that any general 1

time series modeling strategy must fulfill is that its
conceptual framework should provide a role for the continuing

quest for a time series decomposition. ... Thus it seems

critical that a successful approach to time series modeling

employ simultaneously both the spectral domain and the time

domain.'" This paper discusses the enhanced insight to be
obtained by also employing simultaneously the quantile domain
and the information domain. é

This paper discusses how to add to our approach to time

series model identification new diagnostic measures, based on
quantile data analysis of spectral density function, and
information measures. The approaéh implemented in our time
series computer program library TIMESBOARD is called ARSPID
(for autoregressive spectral identification). The 'enhanced"
approach could be called ARSPIQ (for autoregressive spectral
information quantile identification).

In empirical time series analysis a central role in model
identification is the concept of memory [see Parzen (1981)]

which yields a classification of a time series into one of the

following three classes:

white noise

no memory

short memory = stationary ergodic but not white noise

trends, seasonal cycles, long cycles,
non-stationary

long memory
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When a time series is classified as no memory (white noise),

it requires no further analysis (except for quantile

e L

identification of its probability distribution).

When a time series is classified as a short memory time
series, it is described (parametrised) by ARMA(p,q) schemes
that transform it to white noise. The orders p and q are not

measures of the length of memory.

When a time series is classified as a long memory time
series it is described (parametrised) by operators which
transform it to a short memory time series.

To describe the dependence structure of a time series one

introduces quantitative indices which are non-parametric 1

statistics guiding our choice of parametric models. 3
An ARMA model (which is a finite parameter time dumain
model) is a parametric descriptioﬁ of the dependence structure i
of a short memory time series. A nonparametric description of
its dependence structure is provided by the spectral density
function from which one can deduce ''significant frequencies"
(at which the spectral density has local maxima).
The operations which transform a long memory time series
to a short memory one (or which represent a long memory time
series in terms of a short memory one) can be considered a

parametric time domain model. Nonparametric descriptions of

long memory properties are introduced in this paper in terms of

the index of regular variation of the spectral density at a

specified frequency, usually zero frequency.
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2. Quantile identification of probability distributions

To identify probability distribution that fit a time series

sample Y(t), t=1,...,T, one treats the sample as a data batch
Xpooo0X .
For a data batch xl,...,xn one can define the sample

distribution function F(x), -~<x<w, defined by
E(x) = fraction of xl,...,xn which are < x,

and the sample quantile function a(u), O<u<l, defined by
a(u) = F (u) = inf {x: F(x) > u}

Quick and dirty insight into the distributions that fit the

univariate distribution function F is provided by a plot of

the sample informative quantile function

i = —2@ - 80.5)
2{Q(0.75) - Q(0.25)}

» O<u<l

The IQ function is plotted with a vertical scale from -1
to 1; its values are truncated when they exceed +1. For ease
of interpretation of the IQ fungtion, we also plot the IQ
function of the uniforn distribution which is a straight line

passing throug ‘", - _) and (1, .5).
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The distribution functions F(x) that we seek to fit to

the data are usually of the form
= X“u
F(x) = F (23

for parameters y and ¢ to be estimated, and Fo(x) a known

distribution function. The most important cases of Fo(x) are:

x

normal Fo(x) = ¢(x) = [ ¢(y) dy ,
8(y) = @m Y2 exp - % y? ;

exponential F (x) =1 - e* |, x>0

One can test (before parameter estimation) the goodness of fit

of ﬁ(x) to F(x) = Fo(Eéﬁ) by introducing the weighted spacings

- 1 ' ~
d(w) = = £,9,(w) a(w)
where: foQO(u) = fo(F;I(u)) is the density-quantile function
of the specified distribution; a(u) = 6'(u) is the sample
quantile density function (expressible in terms of spacings, or

differences of successive order statistics); and

-~

9 = fo £4Q(®) q(w) du

j
3
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is an. estimator of o called the score deviation. The test

function is the cumulative weighted spacings function
& D(u) = [¥ d(t) dt, Ocucl

which one compares with the uniform distribution D(u) = u.

To test for exponentiality, take foQo(u) = 1 - u. The
diagnostic function B(u) will appear linear when the data is
! exponential. In the important case of a mixture distribution,
! [that is, the lower order statistics represent values from an
exponentially distributed sub-population], B(u) will be linear

over an initial interval O<u<p. When the data batch is the

[ L0
fanla B4

sample spectral density, the value p estimates the proportion

of the total power which is white noise.

.g Diagnostic measures of time series parameters [the sample
- spectral density and correlogram] are provided by plots of

i suitable Ia(u) and 5(u) functions. Examples of their power as
g discriminators of memory are given in Section 7.

~

Quantile Data Analysis of Sample Spectral Density

When the sample mean Y is large, it is necessary to transform
Y(t) to Y(t) - ¥; otherwise one would always obtain a diagnostic
that Y(-) is a long memory time series. An alternative first

step in time series analysis is to replace Y(t) by

(Y(t) - Q€0.5)} + 2{Q(0.75) - Q(0.25)}

............................
...........................................
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When Y(t) is a pre-processed time series (from the sample, 3
the mean or median has been subtracted) one computes the sample

Fourier transform
~ T

Y(w) = 21 Y(t) exp (-2niwt)
t=

at an equi-spaced grid of frequencies in O<w<l of the form
w = k/S, k=0,1,...,S - 1. We call S the spectral computation

number; one should choose S > T + M, where M is the maximum

lag at which one computes sample correlations ;(v).

The sample spectral density E(w), O<w<l, is computed at
w = k/S by squaring and normalizing the sample Fourier transform:
1 53

£ = bWt 17y

1 .
lv(® |2
k=0

The classification of the time series as no memory (or
white noise) is equivalent to the random variables representing

the values of the sample spectral density
f(w), w=k/S k=1,...,[8/2]

having the property that they are asymptotically independent

and exponentially distributed. Therefore tests for white noise

can be obtained by quantile data analysis based tests for

~

exponentiality of the sample spectral density f(w) at suitable

frequencies.
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The data batch E(%), k=0, 1,...,S/2, is tested for
exponentiality by forming its informative quantile function
Ia(u) and its cumulative weighted spacings function B(u), with
foQo(u) = 1-u. How one interprets the quantile data analysis of

the sample spectral density (periodogram) is best illustrated by

examples.

» T T D R L R S T
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i 3. Correlation diagnostics for model memory identification

The time series analyst seeks to develop for an observed
sample time series Y(t), t=1,2,...,T of a time series Y(t),
! t=0, +1, ... various functions that can be estimated and plotted
i which provide insight into, and diagnostic measures of, possible
models that fit the observed time series.
Schuster (1898) pioneered techniques of spectral analysis.
To detect hidden periodicities, Schuster proposed calculating

what we today call the sample unnormalized spectral density or

periodogram

T
£ (w) =% | tzl Y(t) exp (-Zwitw)lz , =0.5<w<0.5.

One actually computes and plots fT(w) at an equi-spaced
grid of frequencies wk==k/S, k=0,1,..., S-1, where S is the
spectral computation number. Using the Fast Fourier Transform,
one chooses T<S<2T. |

The graph of fT(w) is a very wiggly function. If one

interprets local maxima of fT(w) as indicating '"significant

frequencies'" representing '"hidden periodicities' one obtains

RS LA
e

E many spurious periodicities. ]
g The notion of the spectral density f(w) of a time series !
g Y(t), t=0, +1, ... is defined heuristically by ;
- ]

f(w) = lim f(w) X ) }

T+
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If the limit existed one might call f(w) the asymptotic spectral
density of the time series. However the limit does not exist in

any customary mode of convergence.

Wiener (1930) proposed solving the harmonic analysis
problem by defining the sample covariance function RT(v) which

equals the Fourier transform of fT(w):

1 T-v
(v) = = Y(t+v) Y(t) , =0, 1,...,T-1
T 7T :21 v v
=0 , v>T,
= RT(-V) , v<O0 ;
0.5
RT(V) = [ exp (2wivw) fT(w)
-0.5 .

The limit whose existence needs to be assumed is

R(V) = lim Rp(v) ;

T4w

one calls R(v) the asymptotic covariance function of the time

series. One calls

= p(v) = Re3

the asymptotic correlation function; it is the limit of the sample

correlation function
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The sample correlation function pT(v) is an important

~
H
LA Aefesar oA MEEM S . . . .M AN _cac

building block for methods of model identification. Its plot

is called the correlogram. One could test for white noise by

testing whether pT(v), v=1,2,.., N constitute a random normal

data batch.

The cumulative periodogram

3 d ¥ - AN
A N .““.“I."-.‘ " RO e

Fo(w) = [ £p(u') du

- is a diagnostic tool for providing evidence of hidden
periodicities. If it converges, its limit function F(w)

provides a spectral representation of R(v):

X

- R(v) = ji exp 2nive dF(w)

N A probability model under which the asymptotic covariance

.l

. functions exists is the following: Y(t), t=0, +1,... is a zero
mean Gaussian covariance stationary time series with covariance

; function R(v) satisfying (for all t and v)

:

X R(v) = E[Y(t+Vv) Y(t)]

‘: When the time series is stationary and ergodic, the sample

> —

j, covariance function converges to the covariance function.

N




A Gaussian stationary time series is ergodic if and only if

T
limz | REw) =0 . 1

Toro v=1

It is natural to classify a stationary time series into i

three classes according to the rate of decay of the correlation 4

function p(Vv):

T
white noise % } p2(v) = 0 for all T
(no memory) v=1
1 T
ergodic v L P2(V) +0as T+
v=1

(short memory)

W3- § TTN )

T
I p2(v) b O . 3

v=1

non-ergodic
(long memory)

e

One of the aims of this paper is to discuss the unifying role of

IR T VIR

U the concept of memory. The foregoing trichotomy indicates that

there are three types of memory (no, short, long). However the

insights into model identification provided by the notion of

ol Ae i otk

memory are captufed not by definitions in terms of correlations
(or even partial correlations) but by definitions in terms of the

spectral density function and sample spectral density. ﬂ
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4, Spectral density memory classification and indices

The spectral density function f(w), -0.5<w<0.5 is defined

as the Fourier transform of the correlation function p(v):

Fo) = | e 2mivu (y)
=-o
A sufficient condition for f(w) to exist as an ordinary function
is that p(v) is summable. A long memory time series may not
possess a spectral density. To be able to use such a function,
we introduce the sequence of approximating spectral densities

Er(w) = exp (-2rive) p(v) (1- L

|V{<T
The correlation criteria for memory classification provide

equivalent criteria in terms of

Var [£7] = IZZ (Ep(w) - 1)? do = 2 il o(v) (1 - L¥ly2
However a more useful criterion is the dynamic range of ET(w).
We discuss its definition only for the case that f£(w) exists.

A stationary time series can have a spectral density f(w)
and yet not be representable as an autoregressive process. One
needs to assume an additional condition such as f(w) is bounded

above and below; for some constants c¢; and ¢,, 0 < ¢ < flw) <

€y < @ . The dynamic range of f(w) is defined to be
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(8% 1og £(w) - log £(w)}

Dynamic range classification of memory of a time series:

no memory dynamic range = 0

denu SR

short memory 0 < dynamic range < «

long memory = dynamic range = «

Often, zero frequency is the frequency at which the spectral
density has a behavior causing it to have infinite dynamic range.
As w+0, the spectral density f(w) is assumed to be a regularly
varying function, with the representation [called the regular

variation representation at frequency w=0]
-8
f(w) = w L(w)

where L (w) is a slowly varying function. The value of § is an

index of length of memory, since

§ =0
§ #0

No and short memory

Long memory

Long memory time series models considered by Mandelbrodt (1973),

.-Ll'l-

Granger and Joyeux (1980), and Geweke and Porter-Hudak (1983)
have spectral density f(w) satisfying the regular variation

representation. The index 6<0 corresponds to a zero value for

ke tadteded ol o s st s 0b
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f(w) at w=0, while §>0 corresponds to an infinite value for
f(w) at w=0.

When 6>0, the spectral density f(w) is an integrable function
only for 0<§<l; the correlation function p(v) decays slowly as

p(V) ~ vVl asvae e

The value at w=0 of f(w) can be « and still §=0; this holds for

f(w) ~ (logu92 for small w, corresponding to

p(v) ~ log v as v » o
v
A symbolic spectral density f(w) with §>1 is that of a time
series Y(+) whose first difference AY(t) = Y(t) - Y(t-1) is
short memory (covariance stationafy with spectral density

bounded above and below); then
£,(w) ~ 25 £ (w)
Y w? BaY

and 6=2.

Parzen (1983d) gives explicit formulas for the index § in

the context of density-quantile estimation:

§ = lim ]ilog f(wy) dy - log f(w)

w0

= 1im 1 /% log £(A) dr - log f(w)
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To estimate § one forms

k
6 = & L, o8 £ - 10g £¢<EL
where n and k are integers tending to « in such a way that k/n

tends to 0. One can show that

§ = lim §, .
k+o k
k/n-+0
A similar formula can be used to estimate § in a regular

variation representation of f(w) at a frequency w,* represent.

wy = m/n and define

k
=L ] 1og £(1®) - 10g gckilim

6
k j=1 n

Examples of estimates of 6 are given in Section 7.
We estimate the memory index & from consistent estimators
%(w) of the spectral density f£. We use: (1) the non-parametric

kernel spectral density estimator

F(w) = § kGPep(v) exp -2miwv  ,  |0]<0.5
V==

with truncation point M = T7/8 (in practice, we use M = T/2)

and Parzen window

'
hlh s o n commm e .. o —— i o a
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17
k() =1 - 6t2 +6|t|3, |t] <o0.5,
=2@a- [t 0.5 < || <1,
0 , otherwise :

and (2) autoregressive spectral density estimators.

Only examples can show which values of § occur in real
series. The goal in estimating § is to develop diagnostics
concerning the ''detrending' operations to be used to transform
a long memory series to a short memory time series. To model
time series, Box and Jenkins (1970) introduced the ARIMA(p,d,q)
model. Estimation of the parameter d can be approached by
estimating 6. Estimation of p and q can be approached by diverse
order determining methods involving estimating information.

Determining the degree of differencing: When a time series

Y(t) can be transformed to a stationary time series Z(t) by
differencing d times, one can think of the ''spectral density"

fY(w) of Y(+) as having the representation

fy(w) = |1-e"2me|=2d £ ()

which is a special case of assuming that fY(w) is regularly

varying at w=0 with index é=2d. The foregoing estimators for §

may provide alternatives to the techniques for estimating d é
which have been proposed by Granger and Joyeux (1980), Janacek ]
4

(1982), and Geweke and Porter-Hudak (1983).
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5. ARMA models and prediction error memory classification

The concept of an autoregressive process was introduced

by Yule (1927) as an alternative technique for detecing hidden

o e e _ .

periodicities, and estimation of the frequency w in the time

series model

~data

Y(t) = A cos 2mwt + B sin 2nwt + e(t) .

where e(+) is white noise. The function cos 2nwt satisfies the ]

second order difference equation ;

Y(t) + a, Y(t-1) + a, Y(t-2) =0

with a, = -2 cos 2nw and a, = 1. Yule suggested determining

coefficients a; and a, minimizing

T
] {¥Y(t) + a; Y(t-1) + a, Y(t-w)}2
t=1 .
:’
These coefficients may be interpreted as estimators of the 4

parameters in the ''random shock' model
Y(t) + a; Y(t-1) + a, Y(t-2) = ¢(t) .

where e€(t) is white noise. Thus was born the AR(2) model.
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Autoregressive (AR), moving average (MA), and autoregressive-
moving average schemes (ARMA) now play a central role in time
series analysis, since they provide basic models for time series
model identification, forecasting, and spectral estimation.

One definition of an ARMA(p,q) model for a zero mean

covariance stationary time series Y(t), t=0, +1, ... is
Y(t) + ap(l) Y(t-1) + ...+ ap(p) Y(t-p)
= g(t) + bq(l) e(t-1) +...+ bq(q) e(t-q)

where e(t) is a white noise time series, and the transfer

functions

gp(z) 1 +a_(l)z+...+ a_(p) 2ZP,
P P
=1+b, q
hq(z) 1 bq(l) z +...+ bq(q) z
have all their roots in the complex z-plane in the region |z|>1.

For the backward shift operator B we use the lag operator L,

defined by LY(t) = Y(t=1). An ARMA(p,q) model is written

gp(L) Y(t) = h, (L) e ()

An AR(») model is expressed

- - N
Tt W AT T, . . .
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g, (L) Y(t) = e(t)
An MA(~) model is expressed

Y(t) = h_(L) €(t)

A model for a stationary time series is an invertible
filter which transforms it to white noise. For a short memory
time series, the whitening filters can always be represented as
AR(~) or MA(~) and are approximated by ARMA(p,q) of suitable
orders to be estimated. The white noise e(t) to which we seek
to transform a time series Y(t) are the infinite memory one
step ahead prediction errofs (innovations) YV(t) = Y(t)-Y¥(t),

where . .
YH(E) = E[Y(t) |Y(t-1),... ]

The white noise sequence Y'(t) has mean 0 and variance o2R(0),
where

o2 = E[[Y°(t) |21 + R(0), R(0) = E[|¥(t)]?]

We call o: the normalized mean square prediction error, of one-
step ahead infinite memory prediction. The importance of
normalization (which may not currently be standard practice for
all time series analysts) is emphasized by the information theory
approach in the next section. A basic diagnostic tool is the

memory m normalized mean square prediction errors

.............
........
.............
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21
02 = E[|YV'T(t) |2] + R(O),
YV B(e) = Y(e) - YW B(r)
YW e = a (1) ¥(t-1) +...+ a (m) Y(t-m) X #

Given a true (or sample) correlation function p(v), one can

compute (using the Yule-Walker equations) the sequence o2 which i
converges monotonely to the limit o2. An alternative approach

to computing o2 is the fundamental formula
2 _ 1
log o = [, log f(w) dw .

The value of oi is a very useful diagnostic measure of the memory

of a time series.

Memory classification by Normalized Mean Square Predf::tion Error

no memory = g2 =0
short memory = 0 < 0?2 <
long memory = o2 =1

. IO

The estimation of 02 is one of the basic problems of time

T
PSP

series model identification. One important method is

where ; is chosen by an order-determining criterion (AIC due to

Akaike or CAT due to Parzen). The pioneering work of Akaike (1974),

.........................................
..........................................
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(1977) has shown the central role of information theoretic
ideas in defining these criteria.

The next section discusses how to use information
divergence ideas to measure the ability of ARMA(p,q) schemes
to provide approximating models to the exact models (of a
short memory time series) provided by AR(») and MA(w)

representations.
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6. Information approach to memory and ARMA schemes

Information divergence of a probability density g from a

e A Ko

"

(true) probability density f is defined by

WY

I(£ig) = [“(-log B3} £(») dy

il b i e d ol

Y

Information has an important decomposition

I(f;g) = H(f;g) - H(f)

defining cross-entropy H(f;g) and entropy H(f) by
H(f;g) = [T{-log g(y)} £(y) dy

H(E) = H(E;E) = [ (-log £(y)} £(y) dy

The information I(Y|X) about a continuous random variable

Y in a continuous random vector X is defined by

The entropy of Y and conditional entropy of Y given X are
defined by

H(Y) = H(fy)

..... -
N
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HOY[X) = H(fy ) = EyH(fy xo,)

One can establish a fundamental decomposition

T i K3
e es_ o < et fs

I(Y|X) = H(Y) - H(Y|X) : i

Define the information about Y in X, conditioned on X; by

= H(Y|X1)- H(YIXI’XZ)
3 A fundamental formula to evaluate an information increment is

I(Y|X,:X,,X,) = I(Y|X{,X,) - I(Y|X;) . B
1°71 72 1:72 1

Tt

When X and Y are jointly normal random variables, let I (Y)

denote the variance of Y and £(Y|X) the conditional variance of

- Y given X (which does not depend on the value of X). Then
3 1 1

H(Y) = 5 log Z(Y) + 7 (1 + log 2m)
: H(Y|X) = % log I(Y|X) + 7 (1 + log 2m)

I(Y|X) = - 3 log 2 1Y) (¥|X)

......
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A general approach to memory uses information in the

infinite past about the current value, defined by

I, = lim Im
m-oo

= I(Y(mtl) [Y(1),...,Y(m))

In

Information Definition of Memory. We define a time series

Y(t), t=0, +1,... to be

no memory = I, =0 ;
short memory = 0 < I < = ;
long memory E I, =

This definition agrees with the criterion in the previous
section in terms of o: since for a stationary Gaussian time

series I_ = - % log ol.

Example. A random walk has long memory and white noise has

no memory.

A random walk is defined by Y(mt+l) = Y(m) + e¢(mt+l), Y(D)
where ¢(t) are independent N(0,02), I(Y(mt+l)) = (m+l) o2,
E(Y(m+l) [Y(1) ,..,¥Y(m)] = Y(m), Z(¥(m+l)|Y(1)1,...,Y(m)) = o2,
I, = 7 log (@), I_ ==. A pure white noise is defined by

Y(m) = e(m). Then r(Y(m+l)) =o? E[Y(m+l)|Y(1),...,Y(m)] = O,
L(Y(m+1l) |Y(L),...,Y(m)) =02 1,=0,1I,=0.

]
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N Both a random walk and a pure white noise can be regarded
iu as special cases [corresponding to p=1 and p= 0 respectively])
%% of the AR(l) model
Y(t) = pY(t-1) + e(t), t=1,2,.

where e¢(t) are independent N(0,02). When |p| < 1, an AR(l)
g defines a stationary (or asymptotically stationary) time series
.i satisfying

I_ = - 7 log (1-p%).

In order to transform one's thinking about AR(1l) models from
24 p to I  one needs a table of corresponding values of these
§§ parameters. |
N
- p 1 .2 .3 .4 .5 .6 .7 .8 .9 .95
,éE I, .005 .020 .047 .087 .144 .223 .337 .511 .830 1.16
e
1. | .25 .5 .75 1.0 1.25 1.50 1.75 2 3 4
;: p .627 .795 .881 .930 .958 .975 .985 .991 .999 .9998
;: A very quick and dirty rule for memory diagnosis is to regard an
t% observed value of I_ > 1.5 as an early detector of very long
éi memory, and I_ > 1.00 as an early detector of long memory.
f: . This rule is to be used in cbnjunction with other rules for
;3 discriminating memory type which are given in Section 7.
~
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We next discuss how to interpret an ARMA(p,q) scheme in
terms of information. Let To,q = IO g ¥, Yfl....qu)
denote the information about Y(t) in Y(t-1),...,¥(t-p),

Yv(t-l),...,Yv(t-q). _For a Gaussian stationary short memory

time series

1
I =- > log g2
P.q Z “%8 9% 4
where
2 . -1 v v
%, = E D QY ,..Y LISTRRRTE SO P
Let Y denote the infinite past Y(t-1), Y(t-2), ... . Then

I, = I(Y|Y) = - } log o2

A measure of the goodness of fit of an ARMA(p,q) model to

the true model for a stationary time series is

= v v o,
IP,Q;O I(Y‘Y-l"°”Y_pt Y'l"”'Y-q' Y)

~1 - Ip,q

2

1 1
= (- 7 log o2) + 5 log %.q

A time series Y(-) is ARMA(p,q) if, and only if, Ip qie " 0.




Formulas for 1 are most conveniently developed in

P.q:i®
terms of the coefficients 81,82,... of the MA(») representation

of a time series:
Y(t) = YV(t) + B, YV(t-1) + ...

There are two methods for estimating the MA(=) coefficients;
invert AR( m) where m is chosen by an order-determining
criterion, or derive By from estimators of (the cepstral

pseudo-correlations)
0.5
p(v) = jo 5 exp (2nivw) log f(w) dw

In the Gaussian case, information is (up to a constant)
the logarithm of variance. It may seem that there is no
reason to prefer information to variance. However information
concepts are meaningful even for non-Gaussian series (although
they have not yet been extensively calculated in the non-Gaussian
case). Thus by translating variance into information, one can
eventually transfer one's Gaussian intuition to non-Gaussian
data analysis.

To illustrate the use of information in model identification,
let us consider the loss one sustains in using the best fitting

AR(2) model when the true model is an ARMA(1,1)

Y(t) + a Y(t-1) = e¢(t) + b e(t-1)

. . . - . . . e e o
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One can compute o2, p(l), p(2) in terms of a and b. The values
of p(1) and p(2) determine (via the Yule-Walker equations) the
optimal values 82, ;2(1), ;2(2). When a = -.5, b = .5, one
obtains o2 = .4286, p(l) = .7143, o(2) = .3571; ;% = 4418,
;2(1) = -.9378, ;2(2) = ,3126. The information loss in using

the approximating AR(2) model
Y(t) - .9378 Y(t-1) + .3126 Y(t-2) = e(t)
rather than the exact ARMA(l,1l) with -a=b=.5 is 015, since
ICY|Y 4,Y o5 Y) = (- L1 log 0%} - {- » log 02}
-1’2 7 g © 7 g o0,
= ,4236 - .4084 = .015

Estimating MA(«) is also a prerequisite to using another

criterion that we use to estimate memory: the Prediction Variance

Horizon function, introduced in Parzen (1981). It provides a
quantitative method of measuring memory (especially medium

memory) by HORIZON, defined as the smallest value of h for which

1+ 82()+...+8%(h-1) , .95
1+ 82(1) +... -

The left hand side of the above inequality can be interpreted

as representing the mean square error of prediction h steps . *

ahead.




Quantile based time series diagnostics, and their

2.

representative values

This section introduces various quantile based time series
diagnostic measures. Their use can be considered exploratory
data analysis since they require no theory for interpretation if
one is willing to base one's conclusions on the empirically
observed values of the criteria for representative time series.
On the other hand, the criteria are based on clearly stated
concepts .of probability theory, and one could study theoretially
the distribution of the criteria for various time series models.

Quantile diagnostics of normality of data. A diagnostic

measure of the shape of a distribution is the log standard
deviation of the informative quantile function, denoted LNSDIQ,

and defined by

LNSDIQ = log standard deviation of original data:}

twice interquartile range

For a normal distribution, interquartile range equals 1.35
standard deviation; therefore LNSDIQ = - log 2.7 = -1
approximately. We can regard a significant difference of

LNSDIQ from -1 as an indication that the probability distribution
of the data is not normal (Gaussian). A more formal test of

normality is to compare LNSDIQ with LNSGMO = log 60, where

g, = fg o~ L(w) Ia(u) du

.......
-----
- .
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is the score deviation (an efficient estimator of g for a

normal distribution, obtained as a linear combination of order [

stat;stics). This test (analogous to the Shapiro-Wilk test for

normality) requires further theory as we find examples in which

the data have IQ(u) plots that are not normal (confirmed by

LNSDIQ different from -1), yet LNSDIQ and LNSGMO are not 1

different. . !
To decide whether data is normal, the entire graph of the

informative quantile [IQ(u)] function should be examined.

However an early detector of the shape is provided by the

Bl il

value of LNSDIQ as is indicated by the following empirical

¢

values:
~ 4

LNSDIQ I, {
Variable Cauchy white noise ' 0

-1.14 Airlines log monthly 1.38

-1.14 NYC Monthly Births .93

-1.24 Lines + Noise 1.72

-1.34 Cauchy random walk 1.48

-1.34 NYC Monthly Temperature 1.17

-1.32 Normal random walk 1.11

In the tables in this section, I = - % log oi is estimated

by I; for the approximating AR(m) scheme, where the order m is
determined by the AIC criterion (or equally the CAT criterion).

Periodogram. For a white noise time series whose random

variables have finite second moment, the quantile function of '

the periodogram should be that of an exponential distribution with

mean 1. A test of white noise is provided by examining IQ(u)

.......................
........
.......

......................
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for exponentiality. Powerful discriminators of memory type are

{ the median and variance of the periodogram. For white noise

Periodogram median = log 2 = .69 )

Periodogram variance = 1.

o
E% As memory increases, per. median decreases and per. variance
:\ increases, as the following empirical results confirm [the values

By for AR(l) processes are based on the table '"Quantile Memory .
: Analysis of Simulated AR(1l)" in the Appendix].

Periodogram median

N .89 Cauchy white noise

& .7 Normal white noise

> .2 Normal AR(1l), p = .8
.08 Normal AR(1l), p = .9

& .02 Normal AR(1l), p = .99

v .08 NYC Births Monthly :
.06 NYC Temperatures Monthly
.04 Normal random walk
.03 Airlines log monthly

. .03 Cauchy random wlak

o .02 Lines plus noise

:

- Periodogram variance

o 67.7 Lines plus noise

» 49.8 NYC Temperatures Monthly

e 41.5 Normal random walk
38.3 Cauchy random walk
39.7 Airline log monthly
33.1 NYC Births monthly

- 42. Normal AR(1l), p = .99

X 22. Normal AR(l), p = .9

. 1 Normal white noise

% 5 Cauchy white noise

e -
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Correlations. As a memory diagnostic, we use correlations

mean square of sample correlation ;(v) = pT(v). v=1,2,...,

1?“2

pt(vVM)

N v=1

computed for a large value of N. It is zero for white noise, and

increases with memory. Some empirical values are:

.002 Cauchy white noise

.004 Normal white noise

.01 Normal AR(1l), p = .7
.1 Normal AR(1), p = .9
.2 Normal AR(2), p = .99
.14 NYC Births monthly

.18 Normal random wlak

.17 Cauchy random walk

.19 Airlines log monthly
.23 Line plus noise

.26 NYC Temperatures monthly

Delta estimators. A conclusion that a time series is long

memory is regarded by us as valid only when it is confirmed by
the behavior of the sequence of estimators 6y of the memory
index 6. We routinely form these estimators at w=0 and w=1/12.
Note that 1/12 is the period of an annual cycle in monthly data;
the program permits the specification of any other seasonal
frequency. Two sequence of estimators Gk are formed; from the
best approximating AR scheme, and from Parzen window eatimators

with truncation point approximately equal to T/2, where T is

the time series sample size [the time series examined had

T=144 to 200].




_____

Our "estimator'" § is currently only a summary of the
behavior of the sequences 6, indicating a value about
which there is clustering. For normal AR(l) schemes at w=0

the following typical values were found in simulated series.

approximate 3 2 1.5 1
when I 1.75, 2 1.25, 1.50 1
P .99 .96 .93

For empirical series we observed the following estimators ¢:

w=20 w=1/12
Best Parzen Best Parzen
AR window AR window
Lines + Noise 1.98 2.22 .38 .51
Cauchy random walk 1.84 1.84 .37 .48
Airlines log monthly 2.33 2.22 1.56 1.42
NYC Temperatures Monthly -.4 -.8 2.1 2.6
NYC Births Montaly 2.05 1.74 1.12 .77

Note that a negative value of § at w=0 indicates the

possibility that the spectral density f(w) is zero at w=0.

Partial correlations. The sequence of partial correlations

are usually used to diagnose if the time series obeys an

autoregressive scheme, since AR(p) is equivalent to partial

correlations equal to 0 for orders greater than p. The quantile

function of partial correlations then should look like white
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noise plus as many outliers as the order of the scheme. As

diagnostic measures of memory we compute: ‘

PCIQR = interquartile range of the quantile

function of partial correlations;

PCLNSD = log standard deviation of the informative
quantile function IQ(u) of partial
autocorrelations;

PCOUT = number of partial correlations greater in

absolute value than twice interquartile

range, number of values of u at which

[IQu)| > 1.

Typical values of these measures for representative time series

will be published elsewhere.
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8. ARSPIQ analysis of simulated long memory series

To illustrate their research on long memory time series

models, Granger and Joyeux (1980) generated series of the form
-1 % () = e(v)

with spectral density (for some constant c)
£, (W) = (1 - cos 2my)~ 9

This spectral density is regularly varying at w=0 with memory
index §=2d. They generated two series of length 400,
corresponding to d = .25 (6=.5) and d = .45 (8=.9). We call
these series White §.5 and White 6.9 respectively. I would

like to thank Clive Granger and Roselyne Joyeux for having given
us copies of their series to study. Some of the diagnostics

generated by ARSPIQ are as follows:

White 6.5 White 6.9

DATA LNSDIQ -.95 -1.03
DATA LNSGMO -.95 -1.03
Variance Periodogram 6.9 10.9
Median Periodogram .54 .30
Correlation Mean Square .02 .03
Delta Estimator w=(0
Best AR 0.9 1.0
Parzen Window 0.6 1.2
AIC order fh 7 4
I, = - & log 65 14 .35

Prediction Variance Horizon 24 20

Ve et
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Comparing these diagnostics with the values obtained for
various series in Section 7, we might conclude the following

characteristics for the series.

Data LNSDIQ, LNSGMO Normal _
Corr. Mean Square Short memory i
Periodogram, Var Short memory ?
Periodogram, Median Short memory ]
I, Short memory N
Pred. Var. Hor. Medium memory 3
Delta w=0 Long memory ]

Printer plots of delta estimators are given in Figures 5,
6, 11, 12. One does not currently get an exact numerical
estimate of §. But the values estimated for § are consistent
wiht the theoretical values of § used in generating the time
series. On the basis of the foregoing diagnostics, one would
be justified in recommending a fractional differencing of the
time series, using a rough estimate of §.

If one fitted an ARMA model to these series one might be

tempted to fit ARMA(1l,1) models: for white §.5,
Y(t) - .75 Y(t-1) = e(t) - .47 e(t-1) ;

for white 6.9,

Y(t) - .89 Y(t-1) = e(t) - .44 e(t-1)
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By comparing the spectral distribution function of these ARMA

schemes with the cumulative periodogram one would see that the

oot At

ARMA models inadequately modeled the low frequehcy portion of
the spectral distribution function.

The question is open whether expect practictioners of purely

TR

time domain ARMA or ARIMA methods of time series analysis could
identify the model generating the series simulated by Granger and

Joyeux.
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9. Does the airline data fit the airline model?

The aim of time series modeling is to find a filter that
transforms the time series to white nosie. A pbssible model
identification procedure is to guess a model, estimate its
parameters, form the residuals, and test if the residuals are not
significantly different from white noise. This procedure in
practice may lead two different analysts to infer two different
models. The question is open how to resolve which model to
accept (which model is ''better"). The concept of memory seems to
provide a characteristic of a time series which can be estimated
non-parametrically. Statisticians must decide whether to
accept as a model fitting criterion the following: a model

fitted to a time series must satisfy the criterion that its

memory characteristics agree with those estimated from the

data.

The operation of this criterion can be illustrated by a
classic series used as a test case by researchers on time series

model identification methods — log international airlines

passengers series. The model fitted by Box and Jenkins (1970)
to this series has become celebrated as the 'airline model". It
53 takes lst and 12th differences of the series Y(t) to form a short

memory time series Y(t):

(I-L) (I-L1%) ¥(e) = Y(b);

i(-) is modeled as a special form of MA(12):
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Y(t) = (I-elL)(I-ellez) e(t).

Parzen (1982) has suggested that 12th differencés might suffice
as an operation which transforms the original series (which has
long memory) to a new series which is just barely sbort memory.
The diagnostics in the table [which one interprets by comparing
them with the representative values in Section 7] indicate

that 12th differencing does suffice to yield short memory.

Log Airline

Log Airline 12th difference

Data LNSDIQ -1.15 -.97
Data LNSGMO -1.16 -.97
Periodogram Median .03 .19
Periodogram Variance 39.7 7.7
Correlation Mean Sq. .19 .05
Delta Estimate w=0

Best AR 2.33 0

Parzen Window 2.22 0
Delta Estimate w = 1/12

Best AR 1.56 0

Parzen Window 1.42 0
I = - Vi log oA 1.38 .5
Prediction variance horizon 51 66+

Note on how we form the estimator 4: we write 3=0 to

indicate that sequence Ek oscillates between negative and
positive values. Negative values could indicate g<0 and presence
of a zero of the spectral density. In our current state of
knowledge we assign a value to 8 representing essentially flat
behavior of §,. If the 12th difference spectral density had a

. zero at w=0 or w/1l/12, we would suspect that we had over-differenced.

.....
....... ST e e : Lt - ¥
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A quantitative measure of memory is the prediction variance
horizon [S51 for airline, >66 for 12th difference]; one concludes
that differencing the time series still has significant trend
components (long memory). The ARARMA modeling procedure of
Parzen (1982) finds that if one transforms the airline series by

12 12

the operator I - 1.02L"" rather than by I - L™“, one does obtain

a time series which is unequivocably short memory.

.....



P
h.'

42

10. ARSPIQ Analysis of 12th difference of white noise

The ability of ARSPIQ to identify time series models may

be well illustrated by an analysis of a simulated time series

Y(t) = e(t) - €(t-12),

where ¢(t) is N(0,1) white noise. A sample of size T=200 was
simulated. It had mean .02, median .0l, variance 2.16. The

DATA diagnostics LNSDIQ = -1.04, LNSGMO = -1.04 indicate that

the data is normal.

The diagnostics

Periodogram median .38
Periodogram variance 2.63
Correlation mean square .01
Best AR order m 24
I, 7 log o2 .27

indicate that the time series is short memory. But the AR

spectral density estimator does not perform well.

The delta diagnostics indicate that the time series is

o long memory. That the spectral density has zeroes at frequencies
E& w=0 and w= 1/12 is indicated by significantly negative values of §:
E;:
Fg Delta estimate w=0 w=1/12
.. R
e Best AR(m = 24) -1.9 -1.2
o)
- Parzen window -1.6 - .9

KON -

...................................
..................
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- 3
§ To estimate prediction variance horizon [and an ARMA scheme E
2 by select regression on the covariance matrix of Y(t-j), Y (t-k)] #

we fit an MA(») by inverting an AR(96) whose coefficients are
computed by a Burg algorithm; it estimates I_= .63, prediction

horizon > 100, and chooses the model

b

Y(t) + .41 Y(t-12) = e(t) - .55 e(t-12).

This ARMA spectral density has exactly the shape of the true

spectral density of Y(-).
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11. Quantile graphics printer plots illustrated

The printer plot graphical output generated by ARSPIQ is
illustrated for the long memory simulated series White §.5
and White 6.9 which are respectively labelled JOYl and JOY2

- on the attached output.
¥ Informative quantile function of the original time series

JOY1l and JOY2 are plotted in Figure 1 and 7 respectively (with

letters O and M); Ia(u) plots indicate nor:.ality, confirmed by ?
B(u) plots in Figures 2 and 8. |

Informative quantile function of the periodogram of time
series JOYl and JOY2 are plotted in Figures 3 and 9

respectively; they are not exactly exponential, as is confirmed

by B(u) plots in Figures 4 and 10.

The index 8§ of regular variation of the spectral density at

zero frequency is estimated by the "limit'' of the sequence Sy

'_‘ plotted in Figures 5 and 1l (using AR spectral density estimator)

P and Figures 6 and 12 (using Parzen window spectral density

€ estimator). In Figure 5, a limit exists which is approximately
0.9; in figure 6, one may assign a limit value of approximately

0.6. In figure 11 the limit is assigned to be approximately 1;

; in figure 12, the limit is assigned to be approximately 1.2.
Figures 13 and 14 represent covariances of the time series ]

: Y(t) and its innovations e(t) = Yv(t) estimated for input into ﬂ

E the "ARMA identification by select regression' procedure. The

last column is Prediction Variance Horizon function.
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12, Concluding Remarks

It is important to understand the role of memory when
using [for time series model identification] ARIMA (p,d,q)
models introduced by Box and Jenkins (1970). Memory is related
to d, but not to the orders p and q. An AR(l) process Y(t)
satisfying gl(L) Y(t) = e(t) where gl(z) = l-pz is diagnosed as
long memory when the transfer function gl(z) has its root 1/p
close to the unit circle in the complex z-plane. An example
of a long memory population correlation function is p(v) =
cos 2nwt, which can be regarded as corresponding to an AR(2)
scheme whose transfer function gz(z) = 1-(2 cos 2mw)z + z2
has roots on the unit circle. In the ARSPIQ approach to time
series model identification, roots are not explicitly evaluated
because their role is subsumed by memory.

The models automatically identified by ARSPIQ have been

found in practice to have the same quality as exact models for

- purposes of forecasting and spectral estimation. Other

diagnostics of model structure (such as correlations, partial
correlations, and inverse correlations) are also generated in
ARSPIQ and can be used in traditional ways to guess model
structure.

There are still many open problems in the theory of time
series model identification, such as tests to determine which of
several possible models fits best. FUN.STAT (statistical

reasoning based on quantiles, entropy and information, and

.........
'''''''''




60

functional statistical inference) may be able to help statistical

scientists find better solutions to problems of model

identification.
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ARSPIQ

The ARSPIQ Fortran Computer Program for Time Series Model

Identification by estimating information and memory is used at
Texas A&M in a batch mode. It generates the following output

for examination by the time series analyst.

Quantile data analysis of original data: .IQ(u)
Goodness of fit of normal distribution: D(u).
LNSQID, LNSGMO

Generates time series Y(t) with median subtracted

Quantile data analysis of normalized geriodogram: IQ(u)

Goodness of fit of exponential distribution: D(u)

Median periodogram, variance periodogram

Delta estimates at zero and seasonal frequencies (based
on periodogram, usually no limit evident).

Quantile data analysis of correlations: La(u)
Goodness of fit of normal distribution: D(u)
Correlation mean square

Quantile data analysis of partial correlations: Ié(u)
Goodness of fit of normal distribution: D(u)
Partial correlation inter-quartile range, number of outliers

AR Description of time series: ,AIC, CAT orders
AR coefficients for best order m and 2nd best order
AR spectral density and spectral distribution plots

AR spectral density delta estimators at zero and seasonal
frequencies
Parzen window spectral density delta estimators

MA(») estimation "

AR coefficients for order 4m, computing partial correlations
by non-stationary AR (Burg) method, or optionally by
stationary AR(Yule-Walker) method

Inverse correlations

Infinite MA coefficients, prediction variance horizon

ARMA model identification by select regression
ARMA spectral density and spectral distribution plots.

Cepstral pseudo-correlation estimation.

Spectral local quantile estimation.




